Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cancer ; 14(9): 1486-1498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325050

RESUMO

Purpose: Although growing studies have reported the disturbances of trace elements (TEs) homeostasis was closely associated with the occurrence of colorectal cancer (CRC), the clinical value of TEs in CRC with different molecular subtypes was largely unknown. This study aimed to explore the correlation between KRAS mutations/MSI status and serum TEs levels in patients with CRC. Methods: The serum concentrations of 18 TEs were detected by inductively coupled plasma emission spectrometry (ICP-MS). MSI status (two mononucleotides: BAT25, BAT26, three dinucleotides: D2S123, D5S346, and D17S250), KRAS (G516T, G517A, G518C, G520T, G521A, G522C, and G532A) mutations were detected by the multiplex fluorescent PCR and the real-time fluorescent quantitative PCR, respectively. The correlations among KRAS mutations/MSI status, demographic and clinical characteristics, and TEs were analyzed by Spearman correlation analysis. Results: The propensity score matching (PSM) analysis was adopted to minimize differences between groups. Before PSM, 204 CRC patients were recruited in this study, including 123 KRAS-negative patients and 81 KRAS-positive patients according to the test results of KRAS mutations, and 165 MSS patients and 39 MSI patients based on MSI detection. After PSM, the serum concentration of Mn was significantly lower in CRC patients with KRAS mutations than those without KRAS mutations, and a significant negative correlation was observed between Mn and Pb in the KRAS-positive cases. CRC patients carrying MSI had a significantly lower level of Rb compared to MSS patients. Importantly, Rb was significantly positively correlated with Fe, Mn, Se, and Zn in patients with MSI. Collectively, all our data indicated that the occurrence of different molecular events might be accompanied by different alterations in types and levels of serum TEs. Conclusions: CRC patients with different molecular subtypes presented different alterations in types and levels of serum TEs. Mn was significantly negatively correlated with the KRAS mutations, and Rb was noticeably negatively correlated with the MSI status, indicating certain TEs might contribute to the pathogenesis of molecular subtype-specific colorectal cancer.

2.
Langmuir ; 36(15): 4224-4230, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32216353

RESUMO

The self-assembly of oppositely charged colloidal ellipsoids and spheres under active confinement is first proposed to achieve long-range ordered photonic crystals. Compared with the conventional passive confinement, a characteristic of the active confinement is that boundaries are movable. Our Brownian dynamics simulations show that dynamic steady structures, similar to quasi-2D colloidal crystals, can be obtained under the strong confinement when the two boundaries periodically oscillate together. The in-plane structures can be regulated by changing the charge ratio of the two kinds of particles. These dynamic steady structures are determined by the minimum electrostatic energy with the aid of increased mobility of confined particles, which are not available in equilibrium. Numerical simulations verify that light can be perfectly confined in this dielectric binary photonic slab without any radiation, which corresponds to a typical optical bound state with divergent lifetime and ultrasharp spectral profile. Given the changeable geometry of this photonic slab, the trapped optical field might be applicable to enhanced light-matter interactions. In addition, for thicker layers, layer-by-layer ordered structures occur spontaneously, driven by the active confinement, while no global order occurs in the passive confinement. Our results show that the boundary motion can become an important factor affecting self-assembled structure and function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...